Analysis and Generalizations of the Linearized Bregman Method
نویسنده
چکیده
This paper analyzes and improves the linearized Bregman method for solving the basis pursuit and related sparse optimization problems. The analysis shows that the linearized Bregman method has the exact regularization property; namely, it converges to an exact solution of the basis pursuit problem whenever its smooth parameter α is greater than a certain value. The analysis is based on showing that the linearized Bregman algorithm is equivalent to gradient descent applied to a certain dual formulation. This result motivates generalizations of the algorithm enabling the use of gradient-based optimization techniques such as line search, Barzilai–Borwein, limited memory BFGS (L-BFGS), nonlinear conjugate gradient, and Nesterov’s methods. In the numerical simulations, the two proposed implementations, one using Barzilai–Borwein steps with nonmonotone line search and the other using L-BFGS, gave more accurate solutions in much shorter times than the basic implementation of the linearized Bregman method with a so-called kicking technique.
منابع مشابه
The Linearized Bregman Method via Split Feasibility Problems: Analysis and Generalizations
The linearized Bregman method is a method to calculate sparse solutions to systems of linear equations. We formulate this problem as a split feasibility problem, propose an algorithmic framework based on Bregman projections, and prove a general convergence result for this framework. Convergence of the linearized Bregman method will be obtained as a special case. Our approach also allows for sev...
متن کاملConvergence of the linearized Bregman iteration for ℓ1-norm minimization
One of the key steps in compressed sensing is to solve the basis pursuit problem minu∈Rn{‖u‖1 : Au = f}. Bregman iteration was very successfully used to solve this problem in [40]. Also, a simple and fast iterative algorithm based on linearized Bregman iteration was proposed in [40], which is described in detail with numerical simulations in [35]. A convergence analysis of the smoothed version ...
متن کاملCONVERGENCE OF THE LINEARIZED BREGMAN ITERATION FOR l1-NORM MINIMIZATION
One of the key steps in compressed sensing is to solve the basis pursuit problem minu∈Rn{‖u‖1 : Au = f}. Bregman iteration was very successfully used to solve this problem in [40]. Also, a simple and fast iterative algorithm based on linearized Bregman iteration was proposed in [40], which is described in detail with numerical simulations in [35]. A convergence analysis of the smoothed version ...
متن کاملAccelerated Linearized Bregman Method
In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related sparse optimization problems. This accelerated algorithm is based on the fact that the linearized Bregman (LB) algorithm is equivalent to a gradient descent method applied to a certain dual formulation. We show that the LB method requires O(1/ε) iterations to obtain an ...
متن کاملLinearized Bregman for l1-regularized Logistic Regression
Sparse logistic regression is an important linear classifier in statistical learning, providing an attractive route for feature selection. A popular approach is based on minimizing an l1-regularization term with a regularization parameter λ that affects the solution sparsity. To determine an appropriate value for the regularization parameter, one can apply the grid search method or the Bayesian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 3 شماره
صفحات -
تاریخ انتشار 2010